Filter by input type
Select all
News
Pages
Events
Filter by category
Select all
AI ANALYTICS
Mobile Apps and Internet of Things
Advancement of science
big data
Connected communities
Coronavirus
Courses and training
DIAGNOSIS
Initial Editorial
Editorials
A world in the cloud
Events
Infographics
Artificial Intelligence and Science
IoT Apps
News
Digital platforms
Social networks
Review of scientific publications
Course Summary
Synopsis of essay
Overview of reference frames
Synopsis of recent publications
Use of Digital Platforms
Filter by input type
Select all
News
Pages
Events
Filter by category
Select all
AI ANALYTICS
Mobile Apps and Internet of Things
Advancement of science
big data
Connected communities
Coronavirus
Courses and training
DIAGNOSIS
Initial Editorial
Editorials
A world in the cloud
Events
Infographics
Artificial Intelligence and Science
IoT Apps
News
Digital platforms
Social networks
Review of scientific publications
Course Summary
Synopsis of essay
Overview of reference frames
Synopsis of recent publications
Use of Digital Platforms
Scientists develop vibration-activated elastic device in search of their application for healthcare technology

The results were published in the journal Nature Communications.

Researchers from the National Institute for Materials Sciences (NIMS) and the National Institute of Advanced Industrial Science and Technology (AIST), from Japan have developed a liquid electret material capable of semi-permanently retaining static electricity. This material was then combined with soft electrodes, and thus achieved the first flexible and stretchable device through vibration.

This advancement thanks to its deformable properties and its ability to convert vibrations into electrical signals, its application can be key to the development of medical devices such as pulse sensors or self-acting medical devices.

“An electret material capable of semi-permanently retaining an electrical charge can generate voltage as its distance to the associated electrode changes. Because of this property, electret materials may be applicable to the development of vibration-powered (piezoelectric) devices and sensors capable of converting externally applied vibration and pressure into electrical signals. However, conventional electret materials are solid or in film form, and as such are inflexible and incapable of deformation into complex shapes, making them unsuitable for use in the development of wearable heartbeat and pulse sensors,” reads in the NIMS press release.

In the future these researches hope to finally achieve its sanitary use, once the device has been improved through technical processing modifications. Alternatively, they will also seek the potential use of this innovation as an electrical power source for smart devices.

Outstanding news

News by country

Share

Digital Health in the world

  • — Science Brief: Omicron (B.1.1.529) Variant/CDC updates
    See more
  • —Coronavirus resource center/Johns Hopkins
    See more
  • — Epidemiological tracing of COVID-19 contacts / Johns Hopkins Course
    See more
  • — SARS-CoV-2 infection behavior / FCS calculator
    See more
  • — Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic/ Article The Lancet
    See more
  • —Genomic Epidemiology Tracker/GISAID
    See more
  • — Mexican Genomic Surveillance Consortium
    See more
Secured By miniOrange