Filter by input type
Select all
News
Pages
Events
Filter by category
Select all
AI ANALYTICS
Mobile Apps and Internet of Things
Advancement of science
big data
Connected communities
Coronavirus
Courses and training
DIAGNOSIS
Initial Editorial
Editorials
A world in the cloud
Events
Infographics
Artificial Intelligence and Science
IoT Apps
News
Digital platforms
Social networks
Review of scientific publications
Course Summary
Synopsis of essay
Overview of reference frames
Synopsis of recent publications
Use of Digital Platforms
Filter by input type
Select all
News
Pages
Events
Filter by category
Select all
AI ANALYTICS
Mobile Apps and Internet of Things
Advancement of science
big data
Connected communities
Coronavirus
Courses and training
DIAGNOSIS
Initial Editorial
Editorials
A world in the cloud
Events
Infographics
Artificial Intelligence and Science
IoT Apps
News
Digital platforms
Social networks
Review of scientific publications
Course Summary
Synopsis of essay
Overview of reference frames
Synopsis of recent publications
Use of Digital Platforms
Inteligencia Artificial podría predecir enfermedades óseas en bebés

Investigadores en China probaron un modelo de Inteligencia Artificial para la predicción de enfermedades óseas metabólicas neonatales en los periodos prenatal y posnatal.

Un estudio realizado en China planteó la posibilidad de que una red neuronal artificial logre predecir el riesgo de enfermedad metabólica neonatal en los periodos prenatal y posnatal. La importancia de esta investigación recae en que el reconocimiento temprano de esta enfermedad es complicado ya que se necesitan herramientas adecuadas para evaluar a los bebes con riesgo de desarrollarla.

El objetivo de la investigación publicada en JAMA Network fue desarrollar un modelo predictivo para neonatos en riesgo de padecer enfermedad ósea metabólica en los periodos prenatal y posnatal, así como detectar los factores fundamentales expuestos en ambos periodos.

El estudio de diagnóstico recolectó información de 10,801 mujeres embarazadas y sus hijos.  Los datos corresponden al 1 de enero del 2012 hasta el 31 de diciembre de 2021 en Shanghái, China.

Posteriormente se utilizó un marco de red neuronal artificial para la construcción y desarrollo de cinco modelos predictivos con distintas exposiciones, desde el periodo prenatal hasta el posnatal. El rendimiento de cada modelo fue evaluado a través de la curva característica operativa. Asimismo, la importancia de cada característica fue examinada por y clasificada por los investigadores.

Los hallazgos encontrados en este estudio mostraron que los modelos que incluyeron factores prenatales y posnatales significativos y los factores posnatales solos tuvieron la mejor capacidad para predecir bebés en riesgo de padecer enfermedad ósea metabólica.

De las más de 10 mil mujeres que participaron en el estudio, 138 dieron nacimiento de un bebé con dicha condición. Entre los 5 modelos ANN, el modelo 1 factores prenatales y posnatales significativos mostró el área debajo de la curva (AUC) más alto de 0,981 y posteriormente el modelo 5 factores posnatales con AUC, 0,977.

Los autores explican que la red neuronal artificial “pareció ser una herramienta simple y eficiente para identificar a los recién nacidos en riesgo de enfermedad ósea metabólica prenatal”. Detallaron también que la “combinación de factores prenatales y posnatales o el uso exclusivo de exposiciones posnatales proporcionaron la predicción más precisa”.

De igual manera encontraron que el peso extremadamente bajo al nacer fue el factor predictivo más significativo, así como que el uso de sulfato de magnesio durante el embarazo podría ser un indicador importante para desarrollar esta enfermedad ósea antes del parto.

Last Tweets

Digital Health Events

2023 February

Semana 1

Mon 30
tue 31
wed 1
Thu 2
Fri 3
Sat 4
Sun 5
Mon 6
tue 7
wed 8
Thu 9
Fri 10
Sat 11
Sun 12
Mon 13
tue 14
wed 15
Thu 16
Fri 17
Sat 18
Sun 19
Mon 20
tue 21
wed 22
Thu 23
Fri 24
Sat 25
Sun 26
Mon 27
tue 28
wed 1
Thu 2
Fri 3
Sat 4
Sun 5
  • No Events

  • No Events

  • No Events

  • No Events

  • No Events

Share

Digital Health in the world

  • — Science Brief: Omicron (B.1.1.529) Variant/CDC updates
    See more
  • —Coronavirus resource center/Johns Hopkins
    See more
  • — Epidemiological tracing of COVID-19 contacts / Johns Hopkins Course
    See more
  • — SARS-CoV-2 infection behavior / FCS calculator
    See more
  • — Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic/ Article The Lancet
    See more
  • —Genomic Epidemiology Tracker/GISAID
    See more
  • — Mexican Genomic Surveillance Consortium
    See more
mistake: This content is protected...